
A Group Communication Protocol for CORBA

L. E. Moser, P. M. Melliar-Smith, R. Koch, K. Berket �

Department of Electrical and Computer Engineering
University of California, Santa Barbara 93106

Abstract

Group communication protocols are used in fault-tolerant
systems to maintain strong replica consistency. The Fault-
Tolerant Multicast Protocol (FTMP) described here is a
group communication protocol specifically designed for the
Common Object Request Broker Architecture (CORBA).
FTMP operates over IP Multicast, and consists of the
Reliable Multicast Protocol (RMP) that provides reliable
source-ordered message delivery, the Reliable Ordered
Multicast Protocol (ROMP) that provides reliable totally-
ordered message delivery, and the Processor Group Mem-
bership Protocol (PGMP) that provides processor group
membership services.

1 Introduction
Fault tolerance and high availability can be provided for the
Common Object Request Broker Architecture (CORBA)
[18] by means of object replication, where the replicas of an
object form an object group. However, object replication is
of little value unless the states of the replicas of the objects
remain consistent when methods are invoked on the object
group and when faults occur.

Group communication protocols [14] can facilitate the
maintenance of strong replica consistency for CORBA
applications by multicasting request and reply messages
containing method invocations and responses, and by de-
livering the messages reliably in the same order to all of
the members of a group. Such protocols also maintain the
membership of the group.

In this paper we provide a concrete mapping of
CORBA’s Generalized Inter-ORB Protocol (GIOP) specifi-
cation onto the Fault-Tolerant Multicast Protocol (FTMP),
a multicast group communication protocol that provides
reliable totally-ordered message delivery and group mem-
bership services.

�This research has been supported by the Defense Advanced Research
Projects Agency in conjunction with the Office of Naval Research and
the Air Force Research Laboratory, Rome, under Contracts N00174-95-
K-0083 and F3602-97-1-0248, respectively.

IP Multicast

RMP
(Reliable Multicast Protocol)

ROMP
(Reliable Ordered
Multicast Protocol)

PGMP
(Processor Group

Membership Protocol)

CORBA ORB

Figure 1: The FTMP protocol stack.

2 Overview of FTMP
The FTMP protocol stack consists of the Reliable Multicast
Protocol (RMP), the Reliable Ordered Multicast Protocol
(ROMP) and the Processor Group Membership Protocol
(PGMP) layers, as shown in Figure 1. FTMP provides the
following services:

� Messages multicast to processor groups, consisting of
peer processor members, over IP Multicast

� Reliable delivery of messages to all nonfaulty mem-
bers of a processor group (RMP)

� Delivery of messages in the same causal and total
order to all nonfaulty members of a processor group
(ROMP)

� Processor fault detection and processor group mem-
bership (PGMP).

Each FTMP message has a sequence number, a message
timestamp and an acknowledgment timestamp, included in



GIOP
Header DataFTMP

Header
IP

Multicast
Header

Figure 2: The encapsulation of a GIOP message.

its header. RMP uses the message sequence numbers to
detect missing messages from a source. If RMP detects a
missing message due to a gap in the sequence numbers,
it negatively acknowledges the message. The missing
message can be retransmitted by any processor that has the
message.

ROMP uses the message timestamps to maintain the
causal and total order of messages; the message times-
tamps are derived from logical Lamport clocks. Synchro-
nized clocks can be used to achieve better performance.
ROMP uses the acknowledgment timestamps for buffer
management. The acknowledgment timestamp indicates
that the sender has received all messages with lower times-
tamps from all members of the processor group to which
the message is addressed.

To maintain liveness of ROMP and to keep the message
delivery latency low, processors must transmit messages
on a regular basis. If a processor has no application
message to transmit, it transmits a Heartbeat (null) message.
The Heartbeat messages also monitor the liveness of the
processors and serve as a processor fault detector.

Each processor can be a member of several processor
groups at the same time. PGMP adds (removes) a processor
to (from) a processor group, as the fault tolerance infras-
tructure adds (removes) objects to (from) the object groups.
The protocol removes a processor that has been convicted
of being faulty from all processor groups of which it is a
member.

3 FTMP Messages
3.1 Encapsulation of GIOP Messages
CORBA’s Generalized Inter-ORB Protocol (GIOP) spec-
ification defines eight message types: Request, Reply,
CancelRequest, LocateRequest, LocateReply, CloseCon-
nection, MessageError and Fragment. Each such message
is encapsulated in a FTMP header which, in turn, is encap-
sulated in an IP Multicast header, as shown in Figure 2.

3.2 FTMP Message Header
The format of the FTMP message header is:

magic FTMP byte retrans- message message source
version order mission type size processor id

destination sequence message ack
processor group id number timestamp timestamp

� magic is set to FTMP

� FTMP version is set to 1.0
� byte order is true for little endian and false for big

endian
� retransmission is false for the first transmission of a

message and true for all subsequent retransmissions
� message size is the number of bytes, including header

and payload
� message type is one of the types defined below
� source processor id is the identifier of the processor

that originated the message
� destination processor group id is the identifier of

the processor group to which the message is multicast
� sequence number is incremented each time a mes-

sage that must be reliably delivered is transmitted
� message timestamp is derived from the Lamport

clock of the source processor and is used for mes-
sage ordering

� ack timestamp is a positive acknowledgment time-
stamp that is used for buffer management.

4 FTMP Logical Connections

Just as CORBA’s Internet Inter-ORB Protocol (IIOP) main-
tains a physical connection between a client object and a
server object with reliable source-ordered delivery of mes-
sages using TCP/IP, FTMP maintains a logical connection
between a client object group and a server object group
with reliable ordered delivery of messages. At most one
connection is open between a client object group and a
server object group at any time. Each message sent by
a client (server) object group to a server (client) object
group is delivered to both groups, which enables duplicate
detection and suppression.

Each logical connection has an identifier that consists of
the fault tolerance domain identifier and the object group
identifier of the client object group, and the fault tolerance
domain identifier and the object group identifier of the
server object group.

The connection identifier is used in conjunction with
a request number for detection of duplicate requests and
duplicate replies. They are also used to match a request with
its corresponding reply which is necessary, for example,
when replaying messages from a log.

All of the client replicas use the same request number
for a given request and all of the server replicas use
the same request number for the corresponding reply.
The request numbers are monotonically increasing over
all connections between the two groups; therefore, each
connection identifier, request number pair is unique.



Reliable Totally
Message Type Source Ordered Ordered

Regular Yes Yes
RetransmitRequest No No
Heartbeat No No
ConnectRequest No No

Connect Yes
�

except
to client
group

�
Yes

AddProcessor Yes
�

except
to new

member

�
Yes

RemoveProcessor Yes Yes
Suspect Yes No
Membership Yes No

Figure 3: Message types and the delivery service provided by FTMP.

5 Reliable Message Delivery
The reliable multicast protocol (RMP) provides reliable
source-ordered multicast services to the ROMP and PGMP
layers of the FTMP protocol stack.

RMP employs sequence numbers to achieve reliable de-
livery of messages. A receiver generates negative acknowl-
edgments for lost messages in the form of RetransmitRe-
quests. When a processor receives a RetransmitRequest
for a message that it has received, the RMP layer at that
processor may retransmit the message.

As shown in Figure 3, RMP delivers Regular, Connect,
AddProcessor, RemoveProcessor, Suspect and Member-
ship messages reliably and in source order to the ROMP
layer, except that it does not deliver Connect or AddPro-
cessor messages reliably to a client group or a new member
(because the client group or new member can’t request re-
transmission to ensure reliable delivery until the connection
or new membership is established). RMP delivers Heart-
beat messages directly, but unreliably, to the ROMP layer
as it receives them. Likewise, it delivers ConnectRequest
messages directly, but unreliably, to the PGMP layer.

RMP uses three different message delivery types: Reg-
ular, RetransmitRequests and Heartbeat messages.

Regular Message. The Regular message is used to mul-
ticast GIOP messages. Regular messages are delivered
reliably and in total order.

The format of the Regular message is:

FTMP connection request GIOP
message header id num message

The sequence number in the header of a Regular mes-
sage, supplied by the RMP layer, contains a non-negative

integer n which is the nth message in the sequence
of messages multicast by the processor identified by
source processor id to the group identified by destina-
tion processor group id. RMP uses the sequence number
to detect missing messages and to maintain source-ordered
delivery of messages.

The message timestamp in the header of a Regular mes-
sage, supplied by the ROMP layer, is derived from the Lam-
port clock of the source with the given source processor id.

The ack timestamp in the header of a Regular mes-
sage, supplied by the ROMP layer, indicates that the
source processor id sending the acknowledgment has re-
ceived all messages, from all processors in the processor
group to which the message is addressed, that have times-
tamps less than or equal to the ack timestamp.

The connection id and request num in the body of a Reg-
ular message are used to detect duplicate requests, duplicate
replys, etc from the different replicas of an object. The re-
quest num applies to the logical connection between a client
object group and a server object group identified by the
connection id, and is different from the standard CORBA
request id which applies to a physical connection between
an individual client object and an individual server object.

The connection id and request num are included only
in the Regular messages, which are delivered to the object
replicas, and not in the other FTMP message types.

RetransmitRequest Message. The RetransmitRequest
message is used to request the retransmission of Regu-
lar, Connect, AddProcessor, RemoveProcessor, Suspect
and Membership messages. A processor generates a Re-
transmitRequest message if it determines, from a gap in the
sequence number of the messages that it has received from a
member of a processor group, that it has not received one or
more messages from that processor. No message delivery
guarantees are provided for RetransmitRequest messages.

Any processor that has received a Regular, Connect,
AddProcessor, RemoveProcessor, Suspect or Membership
message and a corresponding RetransmitRequest message
may retransmit the message. The retransmitted message is
identical to the original message.

The format of the RetransmitRequest message is:

FTMP processor start stop
message header id seq seq

The header of the RetransmitRequest message contains
the same sequence number as the previous message orig-
inated by the sender of the RetransmitRequest message.
The message timestamp and ack timestamp are derived
from the current values provided by the ROMP layer.

The processor id in the body of the RetransmitRequest
message is the identifier of the processor for which the
sender of the RetransmitRequest is missing, and requesting



retransmission of, a block of messages with consecutive
sequence numbers from that processor. Start seq holds
the smallest sequence number of the block of missing
messages, and stop seq holds the largest sequence number
of that block. If only one message is missing, start seq and
stop seq are equal.

Heartbeat Message. A Heartbeat message is multicast
by a processor to a destination processor group if the
processor has not multicast a Regular message to that
group within a specified period of time. The choice of
the heartbeat interval is a compromise between message
latency and network traffic. A shorter heartbeat interval
results in lower message latency but higher network traffic.

Heartbeat messages are delivered unreliably and in
source order to the ROMP layer. The purpose of a Heartbeat
message is to provide the other members of the processor
group with the sender’s current sequence number, message
timestamp and acknowledgment timestamp. Heartbeat
messages are not retransmitted, because that information
would have become obsolete by the time a Heartbeat mes-
sage could be retransmitted and that retransmitted message
could reach a receiver.

The format of the Heartbeat message is:

FTMP
message header

The sequence number in the header of the Heartbeat
message is the same as the sequence number of the preced-
ing message originated by the sender of the message. The
message timestamp and ack timestamp are derived from
the current values provided by the ROMP layer.

6 Reliable Ordered Message Delivery
The Reliable Ordered Multicast Protocol (ROMP) layer
receives messages from the Reliable Multicast Protocol
(RMP) layer. As shown in Figure 3, ROMP delivers
Regular, Connect, AddProcessor and RemoveProcessor
messages in causal and total order to the PGMP layer.

ROMP employs message timestamps, derived from log-
ical Lamport clocks, to maintain causal and total order.
A processor advances its Lamport clock so that it is al-
ways greater than the timestamp of any message that it
has received or sent. Better performance can be achieved
through the use of clock synchronization software, or syn-
chronized physical clocks (e.g., using Global Positioning
System (GPS) satellite receivers), particularly over wide-
area networks.

The ROMP layer at a processor determines when the
processor no longer needs to retain a message in its buffer,
because all of the processor group members have received
the message and thus the processor will not need to retrans-
mit the message. ROMP then recovers the buffer space.

7 Processor Group Membership
The Processor Group Membership Protocol (PGMP) con-
tains mechanisms for establishing (releasing) a logical
connection between two object groups. To improve effi-
ciency, these mechanisms allow several logical connections
to share the same physical connection, the same processor
group and the same IP Multicast address.

PGMP also contains mechanisms for adding (removing)
a processor to (from) a processor group in the case that
there are no faulty processors. These mechanisms depend
on the ordering of messages, which continues unaffected
by the adding and removing of processors, provided that no
processor is faulty. If one or more processors are faulty, the
ordering of messages stops until those processors are re-
moved from the membership. PGMP contains mechanisms
to form suspicions that processors are faulty, to convict
processors that enough processors suspect, and to form
new memberships that exclude the convicted processors.

PGMP uses two different types of messages to establish
connections between a client object group and a server
object group: ConnectRequest and Connect messages. The
Connect message is the server’s response to the client’s
ConnectRequest message. Both messages are transmitted
using the IP Multicast address of the fault tolerance domain
of the server object group.

ConnectRequest Message. The ConnectRequest mes-
sage is used by the fault tolerance infrastructure at a client
to request a new connection between a client object group
and a server object group. It is transmitted using the IP Mul-
ticast address of the server object group’s fault tolerance
domain, and is delivered to the PGMP layer. No message
delivery guarantees are provided for ConnectRequest mes-
sages. The client fault tolerance infrastructure retransmits
the Connect Request message periodically until the server
fault tolerance infrastructure responds with a Connect mes-
sage. A retransmission of the ConnectRequest message,
from the client to the server, and a Connect message, from
the server to the client, might cross in the network; thus,
the server might receive a ConnectRequest message for
a connection that it has already established. The server
should ignore such requests.

The format of the ConnectRequest message is:

FTMP connection processor
message header id ids

The destination processor group id, sequence number,
and message timestamp in the header of the ConnectRe-
quest message all have the value 0, whereas the other fields
have their usual meanings and values.

The body of the ConnectRequest message contains the
connection identifier and the sequence of identifiers of the
processors that support the client object group.



Connect Message. The Connect message is used by the
fault tolerance infrastructure at a server to establish a new
connection between a client object group and a server object
group. It can also be used to change the IP Multicast address
or processor group used by an existing connection. When
used to establish a new connection, the Connect message
is transmitted using the IP Multicast address of the server
object group’s fault tolerance domain, to which the client
is listening. When used to change the IP Multicast address
or processor group for an existing connection, the Con-
nect message is transmitted using the current IP Multicast
address and the current processor group for that connection.

The Connect message is delivered reliably and in total
order. However, the client processor group cannot be
guaranteed reliable delivery because the members of that
group are not members of the server processor group to
which the Connect message is addressed. Consequently,
the server processor group retransmits the Connect message
periodically using the new IP Multicast address until it
receives messages over the new connection.

After transmitting or receiving a Connect message, a
member of the processor group is not allowed to transmit
to the group any message that must be ordered, until it
has received from every member of the processor group a
message with a higher timestamp than the timestamp of the
Connect message, such as a Heartbeat message.

If a Connect message is used to change the IP Multicast
address or processor group of an existing connection, then
a receiver ignores any message for the connection, that
uses the current IP Multicast address and current processor
group and that has a larger timestamp than that of the
Connect message. The sender of such a message must
retransmit the message using the new IP Multicast address
and the new processor group.

The format of the Connect message is:

FTMP connection processor group
message header id id

ip multicast timestamp of current
address current membership membership

The fields of the header of the Connect message are
determined as for Regular messages.

The body of the Connect message contains the con-
nection identifier, the processor group identifier, the IP
Multicast address, the timestamp of the current processor
group membership, and the current membership.

The timestamp of current membership is the times-
tamp of the most recent message delivered by the
processor sending the Connect message, and the cur-
rent membership is the processor group membership at that
timestamp. The same interpretation is given to the times-
tamp of current membership and current membership for
the other message types.

7.1 Group Membership Changes for
Non-Faulty Processors

The AddProcessor and RemoveProcessor messages are
used to add non-faulty processors to, and to remove non-
faulty processors from, a processor group. When the fault
tolerance infrastructure creates a new object group, or adds
a member to an object group, that requires the addition
of a processor to a processor group, it must ensure that
any necessary change to the membership of the processor
group has been completed before it makes the change to
the object group membership. Correspondingly, before a
processor is removed from a processor group, the fault
tolerance infrastructure must remove all object replicas on
that processor from their object groups. The price of this is
that messages can be delivered, transiently, to processors
where there are no object replicas; the benefit is a simpler
processor group membership protocol.

AddProcessor Message. The AddProcessor Message is
used to add a processor to a processor group. The AddPro-
cessor message is delivered reliably and in total order.

The format of the AddProcessor message is:

FTMP timestamp of current
message header current membership membership

current new
sequence numbers member

The fields of the header of the AddProcessor message
are determined as for a Regular message.

The body of the AddProcessor message contains the
timestamp of the current membership and the current mem-
bership. It also contains the sequence number of the most
recent message from each member of the current mem-
bership that has been ordered by the processor originating
the message. This information allows the new member to
construct the message order for messages with sequence
numbers higher than those cited in the message.

RemoveProcessor Message. The RemoveProcessor
message is used to remove a non-faulty processor from
a processor group. The RemoveProcessor message is de-
livered reliably and in total order.

The format of the RemoveProcessor message is:

FTMP member to
message header remove

The fields of the header of the RemoveProcessor mes-
sage are determined as for a Regular message.

The body of the RemoveProcessor message contains the
member to remove. The member cited in the message is
removed from the membership when the RemoveProcessor
message is ordered.



7.2 Group Membership Changes for
Faulty Processors

The Suspect and Membership messages are used for pro-
cessor group membership changes due to faulty processors.
When the ROMP layer at a processor determines that an-
other processor has crashed (because it has not received a
message from that processor), it invokes PGMP to remove
that processor from the processor group membership so
that ROMP can order and deliver messages. The protocol
then issues a fault report for the faulty processor which is
conveyed to the fault tolerance infrastructure. The fault
tolerance infrastructure removes the affected replicas from
their object groups, and activates new or backup replicas
for the object groups.

Suspect Message. The Suspect message is used to re-
move a faulty processor from a processor group. Suspect
messages are used in conjunction with heuristic algorithms
to increase the accuracy of the processor fault detectors.
The Suspect message is delivered reliably and in source
order, but not in total order.

The format of the Suspect message is:

FTMP timestamp of suspects
message header current membership

The fields of the header of the Suspect message are
determined as for a Regular message.

The body of the Suspect message contains the timestamp
of the current membership of the group and the processors
that the sender of the message suspects of being faulty.

Membership Message. The Membership message is
used to remove a faulty processor from a processor group.
The Membership message is delivered reliably and in
source order, but not in total order.

The format of the Membership message is:

FTMP timestamp of current
message header current membership membership

current new
sequence numbers membership

The fields of the FTMP header of the Membership
message are determined as for a Regular message.

The body of the Membership message contains the
current processor group membership and the timestamp of
the current membership. It also contains, for each processor
in the current membership, the highest sequence number of
any message addressed to the group, such that the processor
sending the Membership message has received that message
and all messages with smaller sequence numbers. In
addition, it contains the proposed new membership.

The current sequence numbers allow a processor that sur-
vives from the current membership to the new membership

to request retransmission of any message from the current
membership that it has not received, but that some other
processor of that membership has received. The aim is to
ensure that all of the processors in the group, that survived
from the current membership to the new membership, have
received exactly the same messages in the current member-
ship, which is necessary to maintain virtual synchrony.

8 Related Work
Over the past 15 years, a number of multicast group
communication systems have been developed.

The Isis, Horus and Ensemble systems [3, 21] provide
the services of multicast, causal multicast and atomic (total
order) multicast. Those systems provide increasing flex-
ibility in allowing the user to choose the protocol most
appropriate for the application.

The Amoeba system [10] transmits messages point-to-
point to a centralized sequencer, which determines the
message order and then broadcasts the messages. In other
sequencer-based protocols [4, 5, 9], the originators of the
messages broadcast their messages.

The Trans/Total system [13] comprises the Trans pro-
tocol which provides a causal order on messages, and the
Total algorithm which converts this causal order into a
total order. The Transis system [1] is based on the Trans
protocol and on the Isis application programmer interface.
The Totem system [15] uses a logical token-passing ring to
achieve robust operation and high performance.

While the above systems are oriented primarily towards
local-area networks, more recent work has focused on the
development of group communication systems that are
scalable and oriented towards wide-area networks [19, 20].

The Atomic Group system [11] is intended for ATM
networks, and is designed to support large numbers of
small groups. In contrast, the InterGroup system [2] is
intended for the Internet, and is designed to support large
groups. The Newtop system [7] is similar in its objectives
to the InterGroup system, and supports both symmetric and
asymmetric ordering protocols.

Several systems have been developed that use multicast
group communication protocols to augment CORBA ap-
plication objects with fault tolerance and high availability.

These systems include the Electra toolkit, implemented
on top of Horus, and Orbix+Isis, implemented on top of
the Isis [12]. Both Electra and Orbix+Isis integrate the
replication and group communication mechanisms into the
ORB and require modification of the ORB.

The Eternal system [16, 17] provides fault tolerance
for CORBA, using the Totem system to maintain replica
consistency in a manner that is transparent to the ORB.
In addition to transparency to the ORB, Eternal has the
objectives of transparency to the application and ease of
application programming.



The Object Group Service (OGS) [8] provides object
replication through a set of services implemented on top of
a ORB, including a group service, a consensus service, a
monitoring service and a messaging service.

The Maestro toolkit [22] adds reliability and high avail-
ability to CORBA applications, particularly for unrepli-
cated clients and replicated servers. The AQuA framework
[6] uses the Ensemble/Maestro toolkits, as well as the Qual-
ity Objects (QuO) runtime and the Proteus dependability
property manager, to provide fault tolerance for CORBA.

9 Conclusion
We have described the Fault-Tolerant Multicast Protocol
(FTMP), a group communication protocol specifically de-
signed for CORBA. The protocol consists of the Reliable
Multicast Protocol (RMP) that provides reliable source-
ordered multicasts, the Reliable Ordered Multicast Protocol
(ROMP) that provides reliable totally-ordered multicasts,
and the Processor Group Membership Protocol (PGMP)
that provides processor group membership services.

References
[1] Y. Amir, D. Dolev, S. Kramer and D. Malki, ‘‘Transis: A

communication sub-system for high availability,’’ Proceed-
ings of the IEEE 22nd Annual International Symposium on
Fault-Tolerant Computing, Boston, MA (July 1992), pp.
76-84.

[2] K. Berket, L. E. Moser and P. M. Melliar-Smith, ‘‘The
InterGroup protocols: Scalable group communication for
the Internet,’’ Proceedings of IEEE GLOBECOM, Global
Internet ’98 Mini-Conference Record, Sydney, Australia
(November 1998), pp. 100-105.

[3] K. P. Birman and R. van Renesse, Reliable Distributed
Computing with the Isis Toolkit, IEEE Computer Society
Press, Los Alamitos, CA, 1994.

[4] J. M. Chang and N. F. Maxemchuk, ‘‘Reliable broadcast
protocols,’’ ACM Transactions on Computer Systems, vol.
2, no. 3 (August 1984), pp. 251-273.

[5] F. Cristian and S. Mishra, ‘‘The pinwheel asynchronous
atomic broadcast protocols,’’ Proceedings of the 2nd Inter-
national Symposium on Autonomous Decentralized Systems,
Phoenix, AZ (April 1995), pp. 215-221.

[6] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken,
M. E. Berman, D. A. Karr and R. E. Schantz, ‘‘AQuA: An
adaptive architecture that provides dependable distributed
objects,’’ Proceedings of the IEEE 17th Symposium on
Reliable Distributed Systems, West Lafayette, IN (October
1998), pp. 245-253.

[7] P. Ezhilchelvan, R. Macedo and S. Shrivastava, ‘‘New-
top: A fault-tolerant group communication system,’’ Pro-
ceedings of the IEEE 15th International Conference on
Distributed Computer Systems, Vancouver, Canada (May
1995), pp. 296-306.

[8] P. Felber, B. Garbinato and R. Guerraoui, ‘‘The design of
a CORBA group communication service,’’ Proceedings of

the IEEE 15th Symposium on Reliable Distributed Systems,
Niagra-on-the-Lake, Ontario, Canada (October 1996), pp.
150-159.

[9] W. Jia, J. Kaiser and E. Nett, ‘‘RMP: Fault-tolerant group
communication,’’ IEEE Micro, vol. 16, no. 2 (April 1996),
pp. 59-67.

[10] M. F. Kaashoek and A. S. Tanenbaum, ‘‘Group com-
munication in the Amoeba distributed operating system,’’
Proceedings of the IEEE 11th International Conference
on Distributed Computing Systems, Arlington, TX (May
1991), pp. 222-230.

[11] R. R. Koch, L. E. Moser and P. M. Melliar-Smith, ‘‘The
Atomic Group protocols: Group communication protocols
for ATM networks,’’ in preparation.

[12] S. Landis and S. Maffeis, ‘‘Building reliable distributed
systems with CORBA,’’ Theory and Practice of Object
Systems, vol. 3, no. 1 (April 1997), pp. 31-43.

[13] P. M. Melliar-Smith, L. E. Moser and V. Agrawala, ‘‘Broad-
cast protocols for distributed systems,’’ IEEE Transactions
on Parallel and Distributed Systems, vol. 1, no. 1 (January
1990), pp. 17-25.

[14] P. M. Melliar-Smith and L. E. Moser, ‘‘Group communi-
cation,’’ Encyclopedia of Electrical and Electronics En-
gineering, vol. 8, ed. J. G. Webster, John Wiley & Sons
(February 1999), pp. 500-512.

[15] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K.
Budhia and C. A. Lingley-Papadopoulos, ‘‘Totem: A fault-
tolerant multicast group communication system,’’ Commu-
nications of the ACM, vol. 39, no. 4 (April 1996), pp.
54-63.

[16] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan, ‘‘Con-
sistent object replication in the Eternal system,’’ Theory and
Practice of Object Systems, vol. 4, no. 2 (1998), pp. 81-92.

[17] P. Narasimhan, L. E. Moser and P. M. Melliar-Smith,
‘‘Replica consistency of CORBA objects in partitionable
distributed systems,’’ Distributed Systems Engineering, vol.
4, no. 3 (September 1997), pp. 139-150.

[18] Object Management Group, The Common Object Request
Broker: Architecture and Specification, Revision 2.2, OMG
Technical Document formal/98-07-01 (February 1998).

[19] L. E. T. Rodrigues, H. Fonseca and P. Verissimo, ‘‘Totally
ordered multicast in large-scale systems,’’ Proceedings of
the IEEE 16th International Conference on Distributed
Computing Systems, Hong Kong (May 1996), pp. 500-510.

[20] T. Tachikawa, H. Higaki, M. Takizawa, M. Gerla et al,
‘‘Flexible wide-area group communication protocols -- in-
ternational experiments,’’ Proceedings of the 1998 ICPP
Workshop on Architectural and OS Support for Multime-
dia Applications, Minneapolis, MN (August 1998), pp.
105-112.

[21] R. van Renesse, K. P. Birman, M. Hayden, A. Vaysburd et
al, ‘‘Building adaptive systems using Ensemble,’’ Software
- Practice and Experience, vol. 28, no. 9 (July 1998), pp.
963-979.

[22] A. Vaysburd and K. Birman, ‘‘The Maestro approach to
building reliable interoperable distributed applications with
multiple execution styles,’’ Theory and Practice of Object
Systems, vol. 4, no. 2 (1998), pp. 73-80.


